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Abstract

Monte Carlo (MC) simulation of diffusion processes has proved to be a powerful and valuable adjunct to deter-

ministic solutions of the diffusion equation. For the case of a constant diffusion coefficient it is well established that a

MC method using a steplength chosen from the appropriate Gaussian distribution gives accurate results. However, in

the case where the diffusion coefficient is spatially dependent, straightforward modification of this method, involving

replacing the constant diffusion coefficient by the spatially dependent one in the steplength formula, leads to a sys-

tematic error, as shown by comparing MC averages with deterministic solutions. Furthermore, reducing the timestep,

and hence the average steplength, does not reduce this error. In this paper, we trace the source of the error and provide

a simple and readily calculated correction to the Gaussian steplength that reconciles the MC and deterministic

approaches.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Monte Carlo (MC) simulation has proved a valuable tool for investigating processes involving the

diffusion of substances. In particular, in has been used in neurophysiology to study the action of neuro-

transmitters [2–5,9,16] and more recently the function of calcium ions (Ca2þ) in initiating and modifying

synaptic function [6,7,10,14].
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The MC method simulates the dynamics of each particle; in a short time interval Dt a particle is moved

from the point with cartesian coordinates ðx; y; zÞ to a neighbouring point with coordinates

ðxþ Dx; y þ Dy; zþ DzÞ, where the random increments Dx, Dy and Dz are chosen from a suitable distri-
bution. For the case of a constant diffusion coefficient D ¼ D0 this distribution is Gaussian and the in-

crements are readily generated numerically according to the formula Dx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2D0Dt

p
f (with similar formulas

for Dy and Dz), where f is a standard normal deviate, that is, a number randomly chosen from a Gaussian

distribution with mean 0 and standard deviation 1.

Advantages of the MC method for neurobiological modelling include the ability to deal with compli-

cated geometries, the realistic treatment of the binding of ions and molecules to receptors and the explicit

demonstration of the extent of stochastic variability in observable quantities, this latter aspect being a

major feature of experimental records. A disadvantage of the MC method is that often many runs are
needed in order to average out these variations and obtain reliable mean values. Mean values can be di-

rectly obtained from solutions of the partial differential equation for diffusion and this can form a useful

check and supplement to the MC method.

In biological applications the diffusion coefficient has to be modified, for a number of reasons, from the

value it would have in water. One modification reduces the value of D uniformly in order to approximate

the effects of buffering agents [17]; another reduces the value, again uniformly, in order to allow for the

effects of obstructions to free diffusion. This latter consideration leads to the idea of tortuosity, where the

diffusion coefficient is modified to an effective coefficient D� ¼ D0=k
2, where the constant k is a measure of

the tortuosity [13]. The MC method is still immediately applicable to these cases, provided D0 is replaced by

its appropriate value in the formula for the stepsize Dx.
In a more general case, one may have a diffusion coefficient that varies with distance. A particular case

is that of Ca2þ diffusion inside the neuromuscular junction of the crayfish; here it was found that in order

to account for certain experimental results it was necessary to assume that the tortuosity decreases as one

moves away from the release site and in fact that there is a fivefold increase in the diffusion coefficient

over a distance of the order of 100 nm [12]. Here, the calculations were done using a deterministic

model and involved solving differential equations with appropriate boundary conditions. In attempt-
ing to reproduce these calculations using the MC approach we found that there was a systematic devia-

tion of the MC average from the deterministic result. In applying the MC method, we calculated

the stepsize for position x using Dx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DðxÞDt

p
f, where DðxÞ is now the spatially dependent diffusion

coefficient, as this seemed to be the obvious extension of the constant diffusion coefficient case. The puz-

zling feature was that the error did not decrease when the timestep Dt was reduced, even to very small

values.

This discrepancy led us to do a systematic comparison of MC and deterministic results for spatially

dependent diffusion coefficients, working in one dimension for simplicity and starting with the case of linear
spatial dependence, where an exact solution is available. We found that although the exact distribution for

the stepsize differed only slightly from a Gaussian distribution, nevertheless the difference was important

because it is biased in one direction and thus accumulates over time. Furthermore, the error resulting from

using the Gaussian steplength was, to first order, proportional to the timestep Dt, which explained why

reducing the timestep did not help: halving Dt did indeed halve the error but since twice as many steps were

now required there was no overall improvement in accuracy.

Accurate MC results could be obtained by using the exact distribution for the stepsize, but this is

cumbersome and moreover an analytic expression for the exact distribution is available only for a few
special cases. Thus we looked for an easily computable correction to the Gaussian steplength that would be

applicable in the general case. This paper presents the formula for such a correction and demonstrates that

it reconciles the MC and deterministic approaches both for the case of a linearly varying diffusion coeffi-

cient and for the general case.
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2. Diffusion

2.1. Homogeneous case

The general equation for diffusion in one dimension is

oc
ot

¼ o

ox
D
oc
ox

� �
; ð1Þ

where c � cðx; tÞ is the concentration of the diffusing substance and D ¼ Dðx; tÞ is the diffusion coefficient.

In the case where D is constant, D ¼ D0, Eq. (1) reduces to

oc
ot

¼ D0

o2c
ox2

: ð2Þ

For an instantaneous source of strength c0 at x ¼ x0 and time t ¼ 0, that is,

cðx; 0Þ ¼ c0dðx� x0Þ; ð3Þ

this has solution

cðx; tÞ ¼ c0ffiffiffiffiffiffiffiffiffiffiffiffi
4pD0t

p e�ðx�x0Þ2=4D0t: ð4Þ

An alternative interpretation of Eq. (4) is that

fX ðxÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

4pD0t
p e�x2=4D0t ð5Þ

is the probability distribution for finding a particle at location x at time t, given that it was released from the

origin at time t ¼ 0. This is just the distribution function for a Gaussian random variable with mean l ¼ 0

and standard deviation r ¼
ffiffiffiffiffiffiffiffiffiffi
2D0t

p
.

The above contains the basis of the MC method for simulating the diffusion of a particle. One chooses

some small time interval Dt and then moves the particle a random distance X ðDtÞ, where X ðtÞ is a random

variable with distribution given by Eq. (5). The random distance Dx that the particle moves in time Dt can
then be computed as

Dx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2D0Dt

p
f; ð6Þ

where f is a standard normal deviate. An alternative expression is

Dx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4D0Dt

p
erf�1ð2q� 1Þ; ð7Þ

where erfðzÞ ¼ ð2=
ffiffiffi
p

p
Þ
R z
0
expð�x2Þdx and q is a random deviate uniformly distributed on ½0; 1�. In practice

one can choose a suitably fine mesh for q (for example, divide the interval ½0; 1� into 100 equal intervals) and
construct a table of values of erf�1ð2q� 1Þ; the Monte Carlo simulation is then implemented by choosing at

random a value from this table, multiplying it by the constant factor
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4D0Dt

p
to get Dx and moving the

particle to the new position xþ Dx. This process is then repeated as often as necessary in order to generate

the random walk executed by a particle.

In the particular application of interest to us, calcium ions are released from a point source as the re-

sult of a train of action potentials arriving at that location, with each impulse resulting in release

[6,7,10,12]. These ions then diffuse independently through the surrounding medium and act on receptors
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Fig. 1. Comparison of MC and deterministic results for the case of a constant diffusion coefficient, D0. A 100 Hz train of action

potentials results in the point release of calcium ions, with 7776 ions released over the 1.2 ms following the arrival of each impulse

(corresponding to a Ca2þ current of 1.08� 10�20 mol ms�1). These ions diffuse, in one dimension, and the resulting time course of the

concentration at distances from the release site of 20, 60 and 180 nm is shown in (a), (b) and (c), respectively. The concentration is

expressed as the number of particles, scaled by 105 per lm. The solid line gives the MC result and the broken line the deterministic

result obtained by solving the diffusion equation. The value of the diffusion coefficient, corrected for buffering, was D0 ¼ 4 lm2 s�1 and

the timestep used was Dt ¼ 0:15 ls. The resulting concentration, in the MC case, was calculated by averaging the particle count over a

20 nm length and a 200 ls time period (left column) or 20 ls time period (right column). Averaging over the longer time period

smoothes the results so as to make comparison with the deterministic results clearer, without changing the overall shape of the MC

curves; hence the 200 ls averaging has been used for the other graphs in this paper.
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at varying distances from the release site. Fig. 1 shows a one-dimensional version of the process for the
case of a constant diffusion coefficient and a 100 Hz train of action potentials; panels (a), (b) and (c)

show the Ca2þ concentration at distance of 20, 60 and 180 nm, respectively, from the source, with the
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solid line giving the MC result and the broken line the deterministic result obtained by solving the one-

dimensional diffusion equation, Eq. (1). It is clear that the MC average agrees closely with the deterministic

result.

2.2. Nonhomogeneous case

Now suppose the diffusion coefficient depends on position, D � DðxÞ. The na€ıve approach to MC

simulation in this case is to simply replace D0 by DðxÞ in Eq. (6); that is, in time Dt the particle moves from x
to xþ Dx, where the steplength Dx is now to be computed as
Dx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DðxÞDt

p
f: ð8Þ

However, this turns out to introduce a significant systematic error and this error does not decrease when
the timestep Dt is reduced, even to very small values. This is illustrated in Fig. 2, where the calculation of

Fig. 1 is repeated, only now the diffusion coefficient depends on distance. Specifically [12] (see also the web

site http://mrb.niddk.nih.gov/matveev),

DðxÞ ¼ bD½1� 0:8uðxÞ�; ð9Þ

where

uðxÞ ¼ 1

2
ftanh½Aðb� xÞ� þ 1g ð10Þ

and bD is a constant. There is now considerable deviation between the MC (solid line) and the deterministic

(broken line) results, these differences becoming larger with increasing time. Reduction of the timestep by a

factor of 10 (right-hand column) does not improve the accuracy of the MC results.

One way around this problem would be to use the exact distribution resulting from the spatially de-

pendent diffusion coefficient DðxÞ, but there are two drawbacks here: the first is that an analytic expression

for the probability distribution is only known for a limited number of special cases; the second is that the

distribution will depend in a non-trivial way on x and consequently it will have to be re-sampled at each
spatial point of the particle�s trajectory; no simple formula analogous to Eqs. (6) or (7), where the sampling

is done from a fixed Gaussian distribution, will be available.

2.3. Correction to Gaussian steplength

Let fX ðxÞ be the Gaussian distribution function as given by Eq. (5). Then if Dx is the steplength chosen

from this distribution, it is related to a uniform random deviate q by

q ¼
Z Dx

�1
fX ðxÞdx: ð11Þ

Similarly, if fW ðwÞ is the distribution function for the exact steplength Dw, then

q ¼
Z Dw

�1
fW ðwÞdw: ð12Þ

We wish to find an expression for the correction, �, to the Gaussian steplength:
Dw ¼ Dxþ �; ð13Þ

http://mrb.niddk.nih.gov/matveev
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Fig. 2. Comparison of MC and deterministic results for the case of a variable diffusion coefficient, DðxÞ, as given by Eqs. (9) and (10),

with bD ¼ 4 lm2 s�1, A ¼ 35 lm�1 and b ¼ 0:2 lm, giving a diffusion coefficient that increases in magnitude approximately fivefold in

the region 100 nmK xK 300 nm. The remaining details are as for Fig. 1, except that the left column uses a timestep Dt of 0.15 ls and
the right column a reduced timestep of 0.015 ls.
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where Dx is to be calculated using Eq. (8). From Eqs. (11) and (12),Z Dx

�1
fX ðxÞdx ¼

Z Dx

�1
fW ðwÞdwþ

Z Dxþ�

Dx
fW ðwÞdw; ð14Þ

¼
Z Dx

�1
fW ðwÞdwþ �fW ðDxÞ þ Oð�2Þ; ð15Þ
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and thus to first order,

� ¼
R Dx
�1 fX ðxÞdx�

R Dx
�1 fW ðwÞdw

fW ðDxÞ
: ð16Þ

This gives the required correction to the steplength; however, it is not computationally convenient, since

it requires the evaluation of integrals and re-calculation for each choice of Dx. Below we show that this

expression can be considerably simplified.

2.4. Linearly varying diffusion coefficient

Consider the case where the diffusion coefficient is a linear function of position:

DðxÞ ¼ D0ð1þ axÞ; ð17Þ
where D0 and a are constants. Then the solution of (1) under the boundary condition (3) is

cðx; tÞ ¼ c0
D0jajt

e�ðy2þy2
0
Þ=D0a

2tI0
2yy0
D0a2t

� �
; ð18Þ

where y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ax

p
, y0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ax0

p
and I0ð�Þ is a modified Bessel function. This expression follows from the

temperature distribution resulting from an instantaneous cylindrical heat source [8, Section 10.3]; we also

give a direct derivation in Appendix A. In the limit a ! 0 Eq. (18) reduces to the usual Gaussian distri-

bution, Eq. (4).

It follows from Eq. (18) that the exact distribution for the case of a linearly varying diffusion coefficient,

Eq. (17), is

fW ðwÞ ¼
1

D0jajt
e�ð2þawÞ=D0a2tI0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ aw

p

D0a2t

� �
: ð19Þ

We wish to expand this about the corresponding Gaussian distribution for the case where w and t are
small, with w ¼ Oðt1=2Þ (since Dx ¼ Oð

ffiffiffiffiffi
Dt

p
). The result is (see Appendix A)

fW ðwÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

4pD0t
p e�w2=4D0t 1

�
� a
4
wþ a

8

1

D0t
w3 þ Oðw2Þ

�
: ð20Þ

Substituting this into Eq. (16) and doing the integrals leads to

� � �1 ¼
a
2
D0Dt þ a

4
ðDxÞ2

1� a
4
Dxþ a

8D0Dt
ðDxÞ3

: ð21Þ

This gives an easily evaluated expression for the correction to the Gaussian steplength. Note that this

gives the correction for going from x ¼ 0 to x ¼ Dx; if we start from x ¼ x0 then D0 should be replaced by

the value of DðxÞ at the beginning of this step, that is, by D0ð1þ ax0Þ and of course Dx should be computed
using Eq. (6) with the same replacement for D0. In deriving Eq. (21) only the leading terms have been kept;

the next higher order correction, �2, is given in Appendix A, Eq. (A.16), and again only involves simple

algebraic operations for its computation. Fig. 3 shows the relative magnitude of these corrections as

functions of Dx for several values of a. Figs 3(a) and (b) show that even for a large value of a (100 lm�1)

there is only a slight difference between the Gaussian distribution and the distribution obtained using a

linearly varying diffusion coefficient. Fig. 3(C) gives the steplength corrections �, �1 and �2 for the case where
a ¼ 1:4 lm�1; it is clear that over the relevant range of Dx (the Gaussian distribution for Dx is shown as a

dot-dashed line) �1 is sufficiently accurate. Even for the larger value a ¼ 20 lm�1 Fig. 3(d) shows that �1 is
still accurate except near the tails of the Dx distribution.
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Fig. 3. Corrections to the steplength for the case of the linearly varying diffusion coefficient DðxÞ given by Eq. (17). (a) shows the

Gaussian probability distribution (solid line) and the distribution obtained for a linearly varying diffusion coefficient (broken line) as

functions of the steplength Dx, for the case where a ¼ 100 lm�1. The Gaussian density is given by Eq. (5) with x ¼ Dx and t ¼ Dt; the
linear density is given by Eq. (19) with w ¼ Dx and t ¼ Dt. (b) shows the difference (linear – Gaussian) between the two distributions in

(a). (c) shows various approximations to the correction of the steplength for the case where a ¼ 1:4 lm�1. Shown are: � as given by Eq.

(16) (solid line), �1 as given by Eq. (21) (broken line) and �2 as given by Eq. (A.16) (dotted line). Also shown is the (scaled) Gaussian

distribution for the steplength Dx (dot-dashed line). (d) repeats (c) for the case where a ¼ 20 lm�1. In all cases, the remaining pa-

rameters were D0 ¼ 4 lm2 s�1 and Dt ¼ 0:15 ls.
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Fig. 4 shows the results of Ca2þ diffusion, with the same release protocol as in Fig. 1, but with a linearly

varying diffusion coefficient given by Eq. (17) with the left column giving the results using the uncorrected

steplength and the right column giving the results when the leading correction �1 is used. Again, the un-

corrected steplength leads to a systematic and increasing error (compare Fig. 2), but the corrected case gives

good agreement with the deterministic result.

2.5. General non-homogeneous case

In the general case we use a linear approximation to DðxÞ at each step. Now

Dðx0 þ DxÞ ¼ Dðx0Þ 1

�
þ D0ðx0Þ

Dðx0Þ
Dx
�
þ O½ðDxÞ2�; ð22Þ
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Fig. 4. Ca2þ diffusion under a linearly varying diffusion coefficient. The Ca2þ release protocol is the same as for Fig. 1; the diffusion

coefficient is given by Eq. (17) with D0 ¼ 4 lm2 s�1 and a ¼ 1:4 lm�1. The left column shows the MC simulation results (solid line)

when the uncorrected steplength Dx is used; the right column shows the corresponding results when the corrected steplength Dxþ �1 is

used; in both cases Dt ¼ 0:15 ls. In each panel, the broken line gives the deterministic result obtained by numerical solution of the

diffusion equation.
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where D0ðx0Þ ¼ dDðxÞ=dx evaluated at x ¼ x0, so provided the timestep is sufficiently small the linear theory

can be used with D0 replaced by Dðx0Þ and a by D0ðx0Þ=Dðx0Þ; that is, the correction to the steplength is

simply given by Eq. (21) with these replacements.

A practical way of proceeding is to write

DðxÞ ¼ bDsðxÞ; ð23Þ
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where bD is the homogeneous diffusion coefficient and sðxÞ contains the spatial variation. Let cDx be the

Gaussian steplength appropriate for the constant diffusion coefficient bD, as calculated using Eq. (6) or more

conveniently Eq. (7), and let

Dx ¼ cDx ffiffiffiffiffiffiffiffiffiffi
sðx0Þ

p
ð24Þ

be the uncorrected steplength for position x ¼ x0. Then from Eq. (21) the corrected steplength is Dxþ �1,
where
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Fig. 5. Comparison of MC and deterministic results for the case of a variable diffusion coefficient, DðxÞ, as given by Eq. (9), when the

MC stepsize is corrected using �1 as given by Eq. (21) (left column) and �2 as given by Eq. (A.16) (right column). The release protocol

and parameter values are the same as those used in Fig. 2 and Dt ¼ 0:15 ls.
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�1 ¼
KðcDxÞs0ðx0Þ

1þMðcDxÞs0ðx0Þ= ffiffiffiffiffiffiffiffiffiffi
sðx0Þ

p ; ð25Þ

where s0ðx0Þ ¼ ½ds=dx�x¼x0
and

KðcDxÞ ¼ 1

2
bDDt þ 1

4
ðcDxÞ2; ð26Þ
MðcDxÞ ¼ � 1

4
cDx þ 1

8bDDt
ðcDxÞ3: ð27Þ

The advantage of formulating the correction in this way is that once Dt has been chosen, a table of values

of KðcDxÞ and MðcDxÞ can be constructed, using the fact that cDx comes from a Gaussian distribution

(compare the method given above in Section 2.1 for Dx in the homogeneous case), so the use of the cor-

rection �1 then only requires the evaluation of sðxÞ and s0ðxÞ at each point.

As a practical demonstration of the use of the above formulas, we again treat the case presented by

Matveev et al. [12], for simplicity still considering a one-dimensional version. In their case (see Eq. (9)),

sðxÞ ¼ 1� 0:8uðxÞ; ð28Þ

where uðxÞ is given by Eq. (10), so ds=dx ¼ 1:6Auð1� uÞ and the correction �1 as given by Eq. (25) is readily

evaluated. The results are shown in Fig. 5 (left column) and should be compared with the results using the
uncorrected steplength given in Fig. 2. It is seen that the MC average is now in good agreement with the

deterministic calculation. Furthermore, use of the second-order correction �2 (see Appendix A) does not

significantly improve the results (Fig. 5, right column).

The extension of the above to higher dimensions is straightforward, since each cartesian component can

be stepped independently [2] and can be corrected independently using the gradient of the diffusion coef-

ficient in the appropriate direction. Specifically, in three dimensions D � Dðx; y; zÞ and

Dðx0 þ Dx; y0; z0Þ ¼ Dðx0; y0; z0Þ 1

�
þ Dxðx0; y0; z0Þ

Dðx0; y0; z0Þ
Dx
�
þ O½ðDxÞ2�; ð29Þ

where Dx � oD=ox, with similar expressions involving Dy and Dz. The uncorrected steplengths Dx;Dy and

Dz can now be calculated using equations analogous to Eq. (24), the corrections can be obtained from the

analogues of Eq. (25), and hence the particle�s position can be updated. We have checked that this pro-

cedure gives satisfactory results for a spherically symmetric case where release is from a single point and the

diffusion coefficient is a function of the distance from this point.
3. Conclusion

Previous applications of the MC method to diffusion problems are to systems where the diffusion co-

efficient is either independent of position (homogeneous systems) or else the inhomogeneities are in the

nature of impenetrable obstructions, in which case the boundary condition is that of reflection from the

surface of the obstruction [11,15]. In the case of a spatially dependent diffusion coefficient, the ‘‘obvious’’

method is to replace the square root of the constant diffusion coefficient by the square root of the variable

diffusion coefficient in the expression for the Gaussian steplength. A comparison of the distribution
functions for the steplengths in the two cases would lead one to believe that this is likely to be a good

approximation. Also, one would assume that reducing the timestep, and hence the average steplength,

would reduce the error to any desired tolerance. However, a careful comparison with the deterministic
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solution showed that this is not the case, and that there was a systematic error that did not reduce with the

timestep. This systematic error can lead to erroneous conclusions; in the application discussed here the

concentration of calcium ions at a specific location is the determining factor in the release of neuro-
transmitter and the postulated release mechanism is highly sensitive to the precise concentration. Also, it is

often convenient to employ both deterministic and MC approaches to the same problem so agreement is

vital if conclusions are to be consistent.

With hindsight, one can see why reducing the timestep does not reduce the error. Consider a situation

where the diffusion coefficient increases from left to right. If the MC steplength were calculated using the

local value of the diffusion coefficient without any correction, then each step to the left would be ‘‘too long’’

and each step to the right would be ‘‘too short’’. There is thus an inherent bias in the random walk and this

persists regardless of the timestep; reducing this timestep does not help, as more steps are then required.
This intuitive explanation is confirmed by Eq. (21), which shows that to leading order the required cor-

rection to the steplength is proportional to both the gradient of DðaÞ and the timestep (Dt).
We remark that an alternative way of simulating diffusion is to use a fixed steplength and then take each

step randomly to the left or the right. As well as requiring more steps to give the same accuracy as the

Gaussian-distribution method, this approach also suffers from the same type of systematic error for the case

of a spatially dependent diffusion coefficient.

In this paper, we have presented a practical method of implementing the MC method when the diffusion

coefficient depends on position. The method takes its starting point from the usual Gaussian steplength
appropriate for a constant diffusion coefficient and a simple formula is given for the correction to this

steplength arising from the spatial dependence. In general, this leading correction will be sufficient, but in

extreme cases where the diffusion coefficient changes rapidly over a short distance it may be desirable to use

a more accurate correction, and a formula for this has also been given. The calculations presented here all

refer to a particular neurobiological context and have also been given in one dimension for simplicity, but

the method of correcting the steplength is quite general and applicable to any problem involving non-

homogeneous diffusion.
Appendix A

A.1. Solution of the diffusion equation for a linearly varying diffusion coefficient

We wish to solve the diffusion equation

oc
ot

¼ o

ox
D
oc
ox

� �
; ðA:1Þ

under the initial condition

cðx; 0Þ ¼ c0dðx� x0Þ; ðA:2Þ

for the case where the diffusion coefficient DðxÞ has a linear spatial dependence:

DðxÞ ¼ D0ð1þ axÞ; ðA:3Þ

where D0 and a are constants, D0 > 0.

A Laplace transform in t, together with the changes of variable y ¼ ð1þ axÞ1=2 and y0 ¼ ð1þ ax0Þ1=2
leads to

d2C
dy2

þ 1

y
dC
dy

� 4s
D0a2

C ¼ � 2c0
D0jajy0

dðy � y0Þ; ðA:4Þ
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where

C � Cðy; sÞ � Ltfcðx; tÞg ¼
Z 1

0

e�stcðx; tÞdt ðA:5Þ

is the Laplace transform of the concentration. Eq. (A.4) has solutions I0ðhyÞ and K0ðhyÞ, where I0 and K0 are

modified Bessel functions and h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4s=D0a2

p
. Thus the general solution of Eq. (A.4) is

Cðy; sÞ ¼ CðsÞI0ðhyÞK0ðhy0Þ; y < y0;
CðsÞK0ðhyÞI0ðhy0Þ; y > y0;

�
ðA:6Þ

where CðsÞ can be determined from the ‘‘jump’’ condition

dC
dy

����
yþ
0

� dC
dy

����
y�
0

¼ � 2c0
D0jajy0

; ðA:7Þ

leading to CðsÞ ¼ 2c0=D0jaj. The Laplace transform can then be inverted using [8, p. 495]

L�1
s

Imð
ffiffi
s
j

p
x0ÞKmð

ffiffi
s
j

p
xÞ; x > x0;

Imð
ffiffi
s
j

p
xÞKmð

ffiffi
s
j

p
x0Þ; x < x0;

( )
¼ 1

2t
e�ðx2þx02Þ=4jtIm

xx0

2jt

� �
; ðA:8Þ

giving

cðx; tÞ ¼ c0
D0jajt

e�ðy2þy2
0
Þ=D0a

2tI0
2yy0
D0a2t

� �
: ðA:9Þ

A.2. Correction to the steplength

We wish to find a practical expression for the correction �, as given by Eq. (16), for the case where the

diffusion coefficient depends linearly on distance, Eq. (17). As explained in Section 2.4, this essentially

involves expanding the distribution function fW ðwÞ, as given by Eq. (19), about the corresponding Gaussian
distribution function for the case where w and t are small, with w ¼ Oðt1=2Þ. Write Eq. (19) as

fW ðwÞ ¼
jaj
s
e�ð2þvÞ=sI0

2
ffiffiffiffiffiffiffiffiffiffiffi
1þ v

p

s

� �
; ðA:10Þ

where v ¼ aw and s ¼ D0a2t. Inserting the asymptotic expansion of the modified Bessel function [1, Section

9.7.1] gives

fW ðwÞ ¼
jaj
s
en

1ffiffiffiffiffiffiffi
2pz

p 1

�
þ 1

8z
þ O

1

z2

� ��
; ðA:11Þ

where z ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi
1þ v

p
=s and n ¼ �ð2þ vÞ=sþ z. The exponent has the expansion

n ¼ 1

s

�
� 1

4
v2 þ 1

8
v3 � 5

64
v4 þ Oðv5Þ

�
ðA:12Þ

and so

en ¼ e�v2=4s 1

�
þ 1

8

v3

s
� 5

64

v4

s
þ 1

128

v6

s2
þ Oðv3Þ

�
: ðA:13Þ
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Also

jaj
s

1ffiffiffiffiffiffiffi
2pz

p 1

�
þ 1

8z
þ O

1

z2

� ��
¼ jajffiffiffiffiffiffiffi

2pz
p 1

�
� 1

4
vþ 5

32
v2 þ 1

16
sþ Oðv3Þ

�
: ðA:14Þ

Putting Eqs. (A.13) and (A.14) into Eq. (A.11) gives

fW ðwÞ ¼
jajffiffiffiffiffiffiffiffi
4ps

p e�v2=4s 1

�
þ
�
� 1

4
vþ 1

8

v3

s

�
þ 1

16
s

�
þ 5

32
v2 � 7

64

v4

s
þ 1

128

v6

s2

�
þ Oðv3Þ

�
; ðA:15Þ

where terms of the same order have been bracketed. Putting this into Eq. (16) for � and doing the integrals

leads to the approximation

� � �2 ¼ n2=d2; ðA:16Þ

where

n2 ¼
a
2
D0Dt

�
þ a
4
ðDxÞ2

	
þ
�
� a2

16
D0DtDx�

a2

16
ðDxÞ3 þ a2

64

1

D0Dt
ðDxÞ5

�
ðA:17Þ

and

d2 ¼ 1þ
�
� a

4
Dxþ a

8

1

D0Dt
ðDxÞ3

�
þ a2

16
D0Dt

 
þ 5a2

32
ðDxÞ2 � 7a2

64

1

D0Dt
ðDxÞ4 þ a2

128

1

ðD0DtÞ2
ðDxÞ6

!
:

ðA:18Þ

If the higher order terms are omitted from Eq. (A.16) then we get the approximation �1 given by Eq. (21).
For the case where DðxÞ is given by Eq. (23) a practical expression for the correction is (compare Eq.

(25))

�2 ¼
KðcDxÞs0 þ LðcDxÞs02= ffiffi

s
p

1þMðcDxÞs0= ffiffi
s

p þ NðcDxÞs02=s ; ðA:19Þ

where s and s0 are to be evaluated at x ¼ x0, KðcDxÞ and MðcDxÞ are given by Eqs. (26) and (27), respectively,

and

LðcDxÞ ¼ � 1

16
bDDtcDx � 1

16
ðcDxÞ3 þ 1

64bDDt
ðcDxÞ5; ðA:20Þ
NðcDxÞ ¼ 1

16
bDDt þ 5

32
ðcDxÞ2 � 7

64bDDt
ðcDxÞ4 þ 1

128ðbDDtÞ2
ðcDxÞ6: ðA:21Þ
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